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Abstract. We obtain, from a thermodynamic basis, evolution equations for the kinetic and 
the potential contributions to the viscous pressure tensor for a real gas. The macroscopic 
predictions of the theory, previously checked from kinetic theory for ideal gases up to first 
order in the density, are also confirmed for real gases, up to second order in the density. 

1. Introduction 

Extended irreversible thermodynamics is a phenomenological approach to a meso- 
scopic description of thermodynamic systems (Casas-Vizquez et aZ1984, Muller 1985). 
Such a mesoscopic description includes the dissipative fluxes (viscous pressure tensor, 
heat flux) in the set of basic independent variables, besides the usual conserved variables 
(mass, energy and momentum). It explores the thermodynamic consequences of the 
dynamics of the dissipative fluxes and it is not based on the local-equilibrium hypothesis. 
In this way, it constitutes a generalisation of the classical local-equilibrium irreversible 
thermodynamics and allows us to have a clearer insight on the limits of validity of the 
latter theory. 

As a phenomenological theory, extended thermodynamics is not restricted to a 
particular system, but is rather general. Its present limitations come from the use of 
simple equations for the evolution of the fluxes, as the Maxwell-Cattaneo equations 
or  some generalisations of them, but not from the specific system it is applied to. In 
this way, it has been used in connection with solid systems, as rigid heat and electrical 
conductors or dielectric solids, as well as with fluid systems, as gases, simple liquids 
and  viscoelastic liquids. However, the comparison of the macroscopic results with 
microscopic theories has been done rather extensively in the case of ideal gases (Muller 
1967, Lebon 1978, Jou et a /  1979, Jou and Careta 1982, Nonnenmacher 1980, Garcia- 
Colin and Lopez d e  Haro 1982, Garcia-Colin and Fuentes-Martinez 1982, Eu 1979, 
1980, 1981) but it is almost lacking for other systems, with the exception of some 
formal general attempts (Eu 1981) or  very specific models (Nettleton 1959). 

Our purpose in this paper is to carry out such a comparison in the case of dilute 
but non-ideal gases, by taking into account the interaction amongst the molecules. 
Such an analysis is not a trivial extension of the existing developments, but i t  contributes 
with some new facts. Indeed, the traceless part of the viscous pressure tensor, for 
instance, no longer has a purely kinetic origin, but it includes the contribution of the 
interaction forces. In this way, it is no longer a single physical entity, but the sum of 
two independent quantities, each one with its own evolution equation. This requires 
the reformulation of the macroscopic theory in a more general way. 
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The layout of the paper is as follows. In 9 2 ,  we generalise the macroscopic theory. 
In 9 3 we obtain an  explicit microscopic expression for the entropy and for the evolution 
equations of the fluxes, and we compare them with the results of the macroscopic 
theory. In 9 4, we deal with the fluctuations of the viscous pressure tensor and arrive 
at  similar conclusions. 

2. Macroscopic theory 

A simple fluid is described in the classical theory of irreversible thermodynamics by 
means of five local variables: mass density p, internal energy per unit mass e and  
velocity U. These variables are related to the conservation equations of mass, momentum 
and energy, which are 

p = - p c  - U (2 .1)  

pU=-T P+pF (2.2) 

p P = - C . q - P :  v. (2.3) 

Here, q is the heat flux, V the symmetric part of the velocity gradient, F the external 
force per unit mass and P the pressure tensor, which can be decomposed as 

P = ( p  + p \  j U +  P (2.4) 

with p the thermodynamic pressure, p' the bulk viscous pressure, P' the traceless 
viscous pressure tensor, which is assumed to be symmetric, and U the identity tensor. 

In the classical theory, q, p' and P are expressed in terms of p. e, U and their 
spatial gradients by means of the so-called constitutive laws of Fourier and  Newton- 
Stokes, respectively. In extended thermodynamics, one considers q, p' and P as 
independent variables in their own right, and one looks for their evolution equations. 

Usually, one considers @' as a single physical entity: in the case of a dilute 
non-interacting gas, P' is due to the kinetic exchange of momentum, whereas for a 
dense fluid it is mainly due  to the interaction between the molecules. There is a regime, 
however, where both factors-kinetic and potential-have contributions of the same 
order. This is the case of a real, interacting gas in a moderately dilute regime. Therefore, 
fiv must not be considered in this case as a single quantity-kinetic or potential-but 
as the sum of two quantities: Bvc, the kinetic part, plus BVp, the potential part. Since 
both of them are independent, they will follow their own temporal evolution, described 
by the respective differential equations. 

In this paper we will neglect the effect of the heat flux and we will focus our 
attention on the viscous effects. In this way we assume the existence of a generalised 
entropy per unit mass s, which will depend on p, e, i", P p  and p" .  We d o  not write 
any index in the case of bulk viscous pressure p " ,  because it is due exclusively to the 
interaction forces, p' being zero in the case of a non-interacting gas. 

The generalised Gibbs equation for the entropy will then have the form (Jou et a1 
1979, Casas-Vizquez et a1 1984) 

d s  = T-l d e  - T - l p - ' p  d p  - ( T p ) - ' a , :  dP"  - ( T p ) - ' a ,  : d P P  - ( T p  )-'cy dp". (2.5) 

Here, the tensors a, and a,, and the scalar cy will be written, up to first order in the 
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fluxes, as 
a, = a,,BL( + a , p P p  

ap = a p r P  + a,,PP 

a = a,p' 

where the newly introduced a are functions of e and p .  
In  order to obtain the thermodynamic restrictions on the evolution equations for 

PC, f ihP and p ' ,  we must find the entropy production U from the balance equation for 
the entropy, which has the general form 

pS+C - J ,  = U .  (2.7) 

Since we are neglecting the heat flux, which is the only vector we have at hand, 
we will assume that J , ,  the non-convective part of the entropy flux, is zero. We have 
then, by taking into account (2.5), (2.6), (2.1), (2.2) and (2.4) 
U = -T-lp'(V - U +  aOp') - T-'?' : [e+ a,,(*')'+ aP'(bbp)  ] 

- T - ' P P : [ e + a c , ( P ' )  +a,,(d'") 1. (2.8) 
Now we want to obtain expressions for ( P ' ) ' ,  (9,). and P' in terms of the basic 

variables and  their spatial gradients. The simplest assumption compatible with the 
positive definite character of (2.8), taking advantage of the bilinear form of (2.9), is that 

(2.9) 
(2.10) 

(2.11) 

where the U are phenomenological coefficients satisfying the conditions uo 3 0, U,, 2 0, 
upp 2 0 and u,,upp >> U , ~ U ~ ~ .  In  fact, we will not need such general but cumbersome 
equations, but the much simpler form obtained when aCp = a,' = upc = U,, = 0 will be 
sufficient for our purposes. In doing so, we may write (2.9)-(2.11) in the form 

e + CYcc( P C )  + apc( B L P )  = - u , p  - upc@ 

e + a,p ( P  ). + a,,( B \ P )  = - UCPPL - u p p p  

v * U 3- sop' = -U($" 

( B y  = -(l/rc)(PC +277,P) (2.12) 

( P ' P ,  = - (1 / rp ) (Pp+277pe)  (2.13) 

P = - ( 1 / r 0 ) ( p L + f 7 , C  ' U )  (2.14) 

where r,, rp and 1,) are the respective relaxation times associated with PC, P p  and 
p ' ,  V~ and qp are the kinetic and potential shear viscosities and  77, is the bulk viscosity. 
These coefficients are related to a,,, alp,,, U,,, up,, and U,, through 

as may be seen by straightforward comparison. 
I n  this way, the generalised Gibbs equation (2.5) becomes 

(2.15) 

(2.16) 

A look at the evolution equations (2.12)-(2.14) and  the generalised Gibbs equation 
(2.161 shows the thermodynamic consequences of the appearance of the fluxes fi", 
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and p' as independent variables, transforming the whole thermodynamic formalism. 
Note that in the limit of vanishing relaxation times, we recover the local-equilibrium 
version of irreversible thermodynamics. Furthermore, if one considers 7, = T,,, the 
viscous pressure tensor behaves as a whole, and  (2.9) and (2.10) and (2.16) reduce to 
the evolution equations and Gibbs equation used up  to now in irreversible extended 
thermodynamics. 

Let us point out finally that the thermodynamics of real gases has also been studied 
by Kremer (1985) in the context of Muller's version of extended thermodynamics 
(Muller 1985, Liu and Muller 1983). In this version, no explicit interpretation is given 
of the new terms appearing in the entropy differential, but one tries to obtain a relation 
between a,,, c y p p  and the equilibrium equations of state by purely thermodynamic 
methods. Such relations turn out to be rather complicated in the real gas case, whereas 
the present version is more suitable for a comparison with kinetic theory. 

3. Microscopic theory 

So far, we have arrived at an  explicit expression for the generalised entropy. Its validity 
is restricted to the validity of the evolution equations of the form (2.12)-(2.14) or, in 
fact, to a somewhat larger domain which is not the subject of the present analysis (Jou 
er a1 1982). Our purpose in this section is to check the macroscopic predictions from 
a microscopic point of view, as has been previously done in the case of ideal gases. 

In the latter situation, the one-particle distribution function f, is sufficient for a 
microscopic description of the system. This is no longer the case with interacting 
particles, where the two-, three-, four-, . . . , particle distribution functions fi, f3, f4, . . . , 
are in principle needed. Starting from the Liouville equation, it is possible to obtain 
evolution equations for the reduced distribution functions, the well known B B G K Y  

hierarchy. The complexity of the description, however, increases rapidly with the 
number of reduced distribution functions being used. Here we shall limit ourselves 
to a description based on the one- and two-particle distribution functions. This is 
enough even for the description of liquids (Green 1960, Rice and Gray 1965). However, 
the restriction to the use of f, and f2 limits our analysis of the entropy to second-order 
terms in the density. 

The microscopic definition of the entropy in terms of the reduced distribution 
functions is, up  to second order (Green 1969), 

with d r ,  the volume differential in the phase space of n particles, i.e. dT, = 
d r ,  . . . dr, du ,  . . . dun,  r, and  U, being the position and velocity respectively, of the ith 
particle. 

The pressure tensor can also be written in terms of the distribution functions f l  

andf,  (Green 1960, Rice and Gray 1965). We have for the kinetic and  potential parts 

P' = m [ ccfl d c  
J 

4'( R ) R - ' R R g ,  d R  
(3.2) 
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where g,(R) is the pair correlation function, defined as (Green 1960) 

(3.3) 

Here, R = r2 - rl is the relative position between molecules, c = U - U is the relative 
velocity of the particles with respect to the mean velocity, 4 is the interaction potential 
between molecules, a tilde indicates a derivative with respect to R and n is the particle 
number density. From now on, we omit the subscripts for f l  and g,. 

In equilibrium, (3.2) leads to the following expression for the thermodynamic 
pressure (defined as one third of the trace of P =  P‘+ P p ) :  

p = nkT - ( n2/6) $‘Rgo( R )  dR I 
with go( R )  the equilibrium pair correlation function. 

To obtain an explicit expression for the entropy, which will be needed below, we 
write (3.1) in terms o f f  and g, by assuming that f i ( l ,2 )=f l ( l ) f l (2)g2( l ,2 ) .  This is 
exactly true in equilibrium, and out of equilibrium it is valid up to first order in the 
shear rate in the limit of rigid sphere fluids (vanishing soft forces) or in the Fokker- 
Planck approximation (vanishing rigid core)(Rice and Gray 1965, pp 346, 387-90). In 
such a case, one has 

s = - l c ( I  f l n f d u + ( n 2 / 2 )  g l n g d R  . I )  (3.4) 

This expression is not as general as (3.1), but it is enough for our purposes to 
examine from a microscopic point of view the relation between the evolution equations 
for 9‘ and P p  (2.12)-(2.14) with the entropy (2.16) obtained in the previous section. 
Keep in mind that neither (2.12)-(2.14) nor (2.16) are general for all fluids, but that 
our statement is that relaxational evolution equations such as (2.12)-(2.14) are con- 
sistent not with the local-equilibrium entropy but with the generalised entropy (2.16), 
in their domain of validity. 

The evolution equations for f and g are of the form (Green 1960, Rice and Gray 
1965) 

a f l a t + u . T f =  %(f) (3.5) 
dglat  + Re V U  * VRg = 9 ( g )  (3.6) 

where V R  stands for the gradients with respect to the relative position R between two 
molecules. We do not need the specific form of the operators on the right-hand sides 
of (3.5) and (3.6). I t  is enough to know that for the equilibrium distribution functions 
fo and go, which are of the form 

(3.7) 

they satisfy %(fo) = 2 ( g o )  = 0. 
We will write the solutions of (3.5) and (3.6) in a moment expansion with respect 

to the velocity c and to the relative position R, following the ideas of Grad (1958) and 
Hess (1980, 1982, 1983). In this way we assume that 

(3.8) 
(3.9) 

f = fo[ 1 + (Y ( c )  CCO : A( r, r 13 
g = go[l + p , (  R ) R d :  B(r,  t )  + P1(R)R’b(r, r ) ] .  
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Here A and B are traceless symmetric tensors and we have limited the expansion to 
only one term. Note that the expansion of f  is limited to the traceless term ci, due to 
the restriction imposed by the kinetic definition of the temperature, namely Jfc' dc  = 
foc2 dc, which implies that the bulk viscosity vanishes in an ideal gas. This restriction 

does not concern g, so that we have included in (3.9) the separate contributions of the 
traceless tensor RR and its trace R'. 

The coefficients A, B and b are related to the viscous pressure by means of relations 
(3.3) and (3.4), so that we have 

pc a =- 2m{ a ( c ) c 4 d c A  
15 

g\" = -- p1(R)c$'R3g0 dR B 15 n 2  5 
pz( R)c$'R3g0 dR b. 

From (3.8) and (3.9) it is easy to obtain 

(3.10) 

(3.11) 

(3.12) 

an expression for the non-equilibrium 
entropy. Assuming that the terms in A, B and b are small, one may expand (3.2) up 
to second order to obtain 

s = s o - ( k / 2 )  f o ~ j d c - k ( n ' / 4 )  g O + i d R  5 5 (3.13) 

where so is the equilibrium entropy, and Gr and Gg stand for the small non-equilibrium 
terms in (3.8) and (3.91, namely f =  fo(l + G f )  and g = go( 1 +I&). 

Therefore the explicit expression for the entropy in terms of BVc, P" and p v  will be 

(3.14) s = so- ( ~ T ) - ~ C Y , , B ' ~  : P c  - ( ~ T ) - ' c Y , , P ~  : P "  - (2T)- '  CYpb2 

with 
- 2  

CY,, =ET[ 2 m 2  fOa2c4 dc( 1 fOac4 dc) 

=ET[ n' g,,p:R4dR( 5 g0c$'p,R3 dR)-2 

cyo=- 18 kT i gop;R4dR( gOd'P2R' dR)-2.  
n 2  

(3.15) 

(3.16) 

(3.17) 

Now we compare equations (3.15)-(3.17) with the macroscopic predictions of 
(2.15). In order to do this, we must obtain the evolution equations (2.12)-(2.14) for 
the fluxes in the linear approximation. With this in mind, we introduce (3.8) and (3.9) 
into (3.5) and (3.6), respectively, and project the results on the functions CY(C)C;, 
p , ( R ) R d  and p,(R)R', respectively. We obtain in this way 

0 1 .  f 0 c u c 4 d c V = - - A + ~ ~  
7' ' W '  1 

g0P;'R4 dR--- gap, - R' dR e = -- B +  N L  

w* ' 
7" 

1 
a t  3 70 

a t  15 15 I kT I g&;R4dRdb--' 5 g&Z R' d R ( T  - U )  = -- b+ NI. 

(3.18) 

(3.19) 

(3.20) 

where N L  stands for non-linear terms, which are not the concern of this work, and 
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where the relaxation times are related to the operators % and 9 of (3.5) and (3.6) by 
1 

7' 
---= 1 f ocr~ ,~ ,%(ac ,c , )  d c  

We d o  not need the explicit expressions for the relaxation times. The ratios 7/77 may 
be directly obtained from the quotient between the terms in the time derivative of the 
viscous pressure and the terms in velocity gradients, as can be seen in (2.12)-(2.14). 
We therefore obtain from (3.18)-(3.20), taking into account (3.10)-(3.12), 

r, - - lSkT 5 f oa2c4  de(  1 foac4 de)-' 
277, m- 

2 %  
) -' (3.22) 5 goP:R4 d R (  5 g&'P ,R 'dR gow'P,R3 d R  - 

77, n-  

(3.21) 

(3.23) 

When comparing (3.21) with (3.15), one sees that the thermodynamic prediction 
a,., = 7,./277, is always satisfied. Comparison of (3.22) with (3.16) and  (3.23) with (3.17) 
is not so direct. In fact, the equality between these expressions implies a restriction 
upon the functions appearing in the integrals. An easy way to satisfy the restriction 
is to put w'  = 4'; this is indeed the case up  to first order in the density. The equilibrium 
pair correlation function may be written as (Green 1960) 

so that, up  to first order in the density, w (the effective potential) does coincide with 
4 (the interaction potential). 

Since the viscous pressure due to the interaction terms is by itself of order n 2 ,  as 
is seen in (3.4), we conclude that the thermodynamic prediction for the entropy is 
confirmed not only for the ideal gas terms (order n ) ,  but also in the order n' correspond- 
ing to the real gas. However, no definite conclusion can be reached up  to the order 
n 3 ,  though in this order w no longer coincides with 4, the entropy contributions coming 
from f 3 ,  the three-particle distribution function, have been neglected in (3.2) from the 
outset. 

It is worth mentioning that the evolution equations for the fluxes can be obtained 
in a more general way (Kirkwood et a1 1949, Hess 1983). If we multiply both sides 
of (3.5) by mcP and, on the other hand, we multiply (3.6) by - ( n 2 / 2 ) ( d ' / R ) R d  and 
by -(n'/6)4'R and integrate, we find in the linear approximation 

-+- c'fo d c  $'= m cP%( f )  d c  a P v l  2m'  

-+- ( 4 R d ' + R ' d " ) g o d R  e = -  
J a t  15 k T  

a t  15 

(3.24) 

in' 5 R R D ( g )  d R  (3.25) 
R 

ap' n' 
a t  18 
-+- 1 ( 4 R d ' +  R2d" )g ,dR(C - U )  = --in' d ' R 9 ( g )  d R  (3.26) 
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where the right-hand sides can be written as in (3.18)-(3.20) if  (3.8) and (3.9) are 
introduced into the integrals. 

Comparing the above equations with (2.12)-(2.14), one obtains 
- 1  L= (- 2m2 1 c4f0 dc) = (2nKT)-’ 

2vC 15 kT  

= ( $ 5  (4R4’+ R’d“)g, d R  
2 %  

3= ($ 7. 
( 4 R 4 ’ S  R24”)go d R  

(3.27) 

(3.28) 

(3.29) 

which should in turn be equivalent to (3.15)-(3.17). This requirement places conditions 
on the functions Q ( c ) ,  p , ( R )  and P2(R) .  It is easy to see that (3.15) coincides with 
(3.27) if a ( c )  = constant, for instance. In (3.16) and (3.17) we put p ,  - p2 - (4’/ R )  
and the integrals become of the form I = 4”R’go dR. If, furthermore, w ’ =  4’, then 
gb = -( w ‘ /  kT)go = -( 4 ‘ /  kT)g,, and we get I = -kT 4‘R2g& dR. Now we integrate 
by parts: 

- (C#J’R4)’ d R  = K T  
R 2  

(4R4I-t R2$”)go d R  5 I = [  go 

which shows the equivalence with (3.35) and (3.36), assuming that 4’ goes to zero 
faster than R-4. 

Summing up, we have the following sufficient conditions on the form of the 
distribution functions (3.8) and (3.9): (i) a ( c )  =constant, (ii) p, (  R )  - 4 ’ / R ,  (iii) 
p2( R )  - 4’1 R, and also the condition w’= 9‘. In the domain of validity of these 
conditions, the macroscopic results are supported by the microscopic ones. This is 
the case u p  to order n2, as we will confirm from fluctuation theory. 

4. Fluctuation theory 

In  this section we will show that fluctuation theory also places restrictions on the 
comparison of macroscopic theory and kinetic theory, which are the kind of restrictions 
we have found in the previous section. 

We may use the generalised entropy (2.16) to calculate the fluctuations of dissipative 
fluxes (Jou and Careta 1982, Casas-Vizquez and Jou 1984), in combination with the 
Einstein formula for the probability of fluctuations, namely 

Pr - exp( 6’S/2k). (4.1) 
This procedure leads to the following expressions for the second moments of the 

fluctuations of the fluxes: 

(4.3) 

where the angular brackets stand for the equilibrium average of the fluctuations. 
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The second moments of the fluctuations, i.e. the left-hand-side of (4.2)-(4.4), may 
also be evaluated from kinetic theory. Indeed, from (3.2) and (3 .3)  one has 

dc '  c,c2c~c~(Sfcc)Sfcc')) (4.5) 

( S p ' S p ' )  =' 5 d k  b ' ( R ) + ' ( d ) R d ( S g ( R ) S g ( k ) )  (4.7) 

where S f  and Sg stand for the fluctuations of f  and g with respect to their equilibrium 
values. 

We may obtain the second moments of the fluctuations o f f  and g by applying the 
Einstein formula (4.1) to the entropy (3.2) expressed in terms of f  and  g. We obtain 

(4.8) 

36 

(Sf(C)Sf(C')) = 6 ( c -  c')fo(c)/ v 
2 g d R )  (Sg( R )  Sg( R'))  = S (  R - R') 7 - 
n V  

6 (  c - c') and  S (  R - R')  being the respective Dirac deltas. 
These are now introduced into (4.5)-(4.7); then 

m2 
15 V 

(S8I;SS8;;) =- 5 c4f0 d c  

(4.9) 

(4.10) 

(Sp'Sp') = ( n 2 /  18 V)  $"R2g0 dR. 5 
Finally, taking into account (4.2)-(4.4), we obtain 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Now we compare (4.13)-(4.15) with (3.24)-(3.26). Both sets of relations will coincide 
if ( i )  a ( c )  = constant, ( i i )  P I  - P z -  b ' / R ,  (iii) 4 = w. Therefore the comparison with 
fluctuation theory is more restrictive than that with the entropy results, and confirms 
the results obtained in the previous section. 

We may further examine the requirements a = constant, p ,  - p 2  - $'/ R from 
another point of view. These correspond to the non-equilibrium distribution 
(3.8) and (3.9) of the form 

functions 

(4.16) 

(4.17) 
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These distribution functions are precisely those which would be obtained by 
maximum entropy arguments (Levine and Tribus 1979). Indeed, with these arguments 
one has for the distribution functions f and g, maximising the entropy (3.2) under 
conditions of fixed density, energy, momentum and viscous pressures BVc, 9" and p' ,  

f = f o  exp[-mcP: a , ]  (4.18) 

g = g o e x p [ - f n 2 ( 4 ' / R ) R ~ : a , - ~ n 2 4 ' R a o ]  (4.19) 

with a,, up and a, being Lagrange multipliers. In the exponent of (4.18) and (4.19) 
there appear the microscopic operators corresponding to the fixed quantities P', BVp 
and p'. Expanding these exponentials up to the linear terms in the multipliers and 
evaluating them with the help of (3.2) and (3.3), we regain (4.16) and (4.17). Therefore 
the conditions to be satisfied by the functions ( ~ ( c ) ,  P , ( R )  and P , ( R )  are those 
corresponding to the maximum entropy formalism. In this case, the predictions of 
extended thermodynamics are confirmed by microscopic theory. 

5. Conclusions 

We have been able to show in this paper that the predictions of extended irreversible 
thermodynamics, are verified by a microscopic theory up  to second order in the density 
in the case of a real gas. To this end, the viscous pressure tensor was considered as 
a sum of two terms corresponding to the kinetic and potential parts of a molecular 
picture of the gas, each term being characterised by its own contribution to the transport 
coefficient and  its own relaxation time. In this way we showed that extended thermody- 
namics may incorporate microscopic information about the system it describes and it 
is able to reach definite predictions which may be checked from microscopic theories. 
This formalism is seen to be flexible enough to be applied in different circumstances. 

The physical motivation for the decomposition of the traceless part of the viscous 
pressure tensor has here been a microscopic one. One could ask whether it is possible 
to reach such a conclusion from a purely macroscopic basis. The model adopted in 
§ 2 of this paper leads, for the damping coefficient of ultrasound (Balescu 19751, to 

(5.1) 

which for low frequencies reduces to the classical value (neglecting heat conduction 
effects). 

In principle, comparison of (5.1) with experimental results could indicate whether 
or not the assumption T' = T,, of usual extended thermodynamics is adequate. However, 
it would probably be difficult to reach such a conclusion from a purely experimental 
basis, since in liquids 7, << 7p and in rarefied gases 7,. >> q,,, so that in many cases the 
assumption of the traceless viscous pressure tensor being a single quantity would be 
sufficiently satisfactory. 

Recall, finally, that we have not stated that all real fluids satisfy extended irreversible 
thermodynamics, but only those fluids whose constitutive equations for the evolutions 
of the viscous pressure are of the relaxational form (2.12)-(2.14). I n  this case, the 
connection between these equations and a generalised entropy of the form (2.16) is 
confirmed, up to second order in the density, from a rnicroscopic point of view. 
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